Copied to
clipboard

G = C3xC32:A4order 324 = 22·34

Direct product of C3 and C32:A4

direct product, metabelian, soluble, monomial

Aliases: C3xC32:A4, C33:3A4, C62:2C32, (C2xC6):He3, C32:2(C3xA4), (C3xC62):3C3, C22:2(C3xHe3), (C32xA4):4C3, (C3xA4):2C32, C3.10(C32xA4), (C2xC6).10C33, SmallGroup(324,135)

Series: Derived Chief Lower central Upper central

C1C2xC6 — C3xC32:A4
C1C22C2xC6C3xA4C32xA4 — C3xC32:A4
C22C2xC6 — C3xC32:A4
C1C32C33

Generators and relations for C3xC32:A4
 G = < a,b,c,d,e,f | a3=b3=c3=d2=e2=f3=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf-1=bc-1, cd=dc, ce=ec, cf=fc, fdf-1=de=ed, fef-1=d >

Subgroups: 520 in 140 conjugacy classes, 42 normal (9 characteristic)
C1, C2, C3, C3, C3, C22, C6, C32, C32, C32, A4, C2xC6, C2xC6, C2xC6, C3xC6, He3, C33, C33, C3xA4, C3xA4, C62, C62, C62, C32xC6, C3xHe3, C32:A4, C32xA4, C3xC62, C3xC32:A4
Quotients: C1, C3, C32, A4, He3, C33, C3xA4, C3xHe3, C32:A4, C32xA4, C3xC32:A4

Smallest permutation representation of C3xC32:A4
On 54 points
Generators in S54
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)(28 29 30)(31 32 33)(34 35 36)(37 38 39)(40 41 42)(43 44 45)(46 47 48)(49 50 51)(52 53 54)
(7 47 42)(8 48 40)(9 46 41)(13 54 50)(14 52 51)(15 53 49)(22 30 37)(23 28 38)(24 29 39)(31 35 44)(32 36 45)(33 34 43)
(1 10 20)(2 11 21)(3 12 19)(4 18 27)(5 16 25)(6 17 26)(7 42 47)(8 40 48)(9 41 46)(13 50 54)(14 51 52)(15 49 53)(22 30 37)(23 28 38)(24 29 39)(31 35 44)(32 36 45)(33 34 43)
(1 17)(2 18)(3 16)(4 21)(5 19)(6 20)(10 26)(11 27)(12 25)(22 34)(23 35)(24 36)(28 44)(29 45)(30 43)(31 38)(32 39)(33 37)
(1 17)(2 18)(3 16)(4 21)(5 19)(6 20)(7 50)(8 51)(9 49)(10 26)(11 27)(12 25)(13 47)(14 48)(15 46)(40 52)(41 53)(42 54)
(1 42 22)(2 40 23)(3 41 24)(4 51 31)(5 49 32)(6 50 33)(7 37 20)(8 38 21)(9 39 19)(10 47 30)(11 48 28)(12 46 29)(13 43 26)(14 44 27)(15 45 25)(16 53 36)(17 54 34)(18 52 35)

G:=sub<Sym(54)| (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54), (7,47,42)(8,48,40)(9,46,41)(13,54,50)(14,52,51)(15,53,49)(22,30,37)(23,28,38)(24,29,39)(31,35,44)(32,36,45)(33,34,43), (1,10,20)(2,11,21)(3,12,19)(4,18,27)(5,16,25)(6,17,26)(7,42,47)(8,40,48)(9,41,46)(13,50,54)(14,51,52)(15,49,53)(22,30,37)(23,28,38)(24,29,39)(31,35,44)(32,36,45)(33,34,43), (1,17)(2,18)(3,16)(4,21)(5,19)(6,20)(10,26)(11,27)(12,25)(22,34)(23,35)(24,36)(28,44)(29,45)(30,43)(31,38)(32,39)(33,37), (1,17)(2,18)(3,16)(4,21)(5,19)(6,20)(7,50)(8,51)(9,49)(10,26)(11,27)(12,25)(13,47)(14,48)(15,46)(40,52)(41,53)(42,54), (1,42,22)(2,40,23)(3,41,24)(4,51,31)(5,49,32)(6,50,33)(7,37,20)(8,38,21)(9,39,19)(10,47,30)(11,48,28)(12,46,29)(13,43,26)(14,44,27)(15,45,25)(16,53,36)(17,54,34)(18,52,35)>;

G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54), (7,47,42)(8,48,40)(9,46,41)(13,54,50)(14,52,51)(15,53,49)(22,30,37)(23,28,38)(24,29,39)(31,35,44)(32,36,45)(33,34,43), (1,10,20)(2,11,21)(3,12,19)(4,18,27)(5,16,25)(6,17,26)(7,42,47)(8,40,48)(9,41,46)(13,50,54)(14,51,52)(15,49,53)(22,30,37)(23,28,38)(24,29,39)(31,35,44)(32,36,45)(33,34,43), (1,17)(2,18)(3,16)(4,21)(5,19)(6,20)(10,26)(11,27)(12,25)(22,34)(23,35)(24,36)(28,44)(29,45)(30,43)(31,38)(32,39)(33,37), (1,17)(2,18)(3,16)(4,21)(5,19)(6,20)(7,50)(8,51)(9,49)(10,26)(11,27)(12,25)(13,47)(14,48)(15,46)(40,52)(41,53)(42,54), (1,42,22)(2,40,23)(3,41,24)(4,51,31)(5,49,32)(6,50,33)(7,37,20)(8,38,21)(9,39,19)(10,47,30)(11,48,28)(12,46,29)(13,43,26)(14,44,27)(15,45,25)(16,53,36)(17,54,34)(18,52,35) );

G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27),(28,29,30),(31,32,33),(34,35,36),(37,38,39),(40,41,42),(43,44,45),(46,47,48),(49,50,51),(52,53,54)], [(7,47,42),(8,48,40),(9,46,41),(13,54,50),(14,52,51),(15,53,49),(22,30,37),(23,28,38),(24,29,39),(31,35,44),(32,36,45),(33,34,43)], [(1,10,20),(2,11,21),(3,12,19),(4,18,27),(5,16,25),(6,17,26),(7,42,47),(8,40,48),(9,41,46),(13,50,54),(14,51,52),(15,49,53),(22,30,37),(23,28,38),(24,29,39),(31,35,44),(32,36,45),(33,34,43)], [(1,17),(2,18),(3,16),(4,21),(5,19),(6,20),(10,26),(11,27),(12,25),(22,34),(23,35),(24,36),(28,44),(29,45),(30,43),(31,38),(32,39),(33,37)], [(1,17),(2,18),(3,16),(4,21),(5,19),(6,20),(7,50),(8,51),(9,49),(10,26),(11,27),(12,25),(13,47),(14,48),(15,46),(40,52),(41,53),(42,54)], [(1,42,22),(2,40,23),(3,41,24),(4,51,31),(5,49,32),(6,50,33),(7,37,20),(8,38,21),(9,39,19),(10,47,30),(11,48,28),(12,46,29),(13,43,26),(14,44,27),(15,45,25),(16,53,36),(17,54,34),(18,52,35)]])

60 conjugacy classes

class 1  2 3A···3H3I···3N3O···3AF6A···6Z
order123···33···33···36···6
size131···13···312···123···3

60 irreducible representations

dim11113333
type++
imageC1C3C3C3A4He3C3xA4C32:A4
kernelC3xC32:A4C32:A4C32xA4C3xC62C33C2xC6C32C3
# reps1186216818

Matrix representation of C3xC32:A4 in GL6(F7)

200000
020000
002000
000400
000040
000004
,
100000
010000
001000
000100
000020
000004
,
100000
010000
001000
000200
000020
000002
,
600000
060000
001000
000100
000010
000001
,
600000
010000
006000
000100
000010
000001
,
020000
002000
200000
000040
000004
000400

G:=sub<GL(6,GF(7))| [2,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,2],[6,0,0,0,0,0,0,6,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[6,0,0,0,0,0,0,1,0,0,0,0,0,0,6,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,0,2,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,4,0,0,0,4,0,0,0,0,0,0,4,0] >;

C3xC32:A4 in GAP, Magma, Sage, TeX

C_3\times C_3^2\rtimes A_4
% in TeX

G:=Group("C3xC3^2:A4");
// GroupNames label

G:=SmallGroup(324,135);
// by ID

G=gap.SmallGroup(324,135);
# by ID

G:=PCGroup([6,-3,-3,-3,-3,-2,2,650,4864,8753]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^3=c^3=d^2=e^2=f^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f^-1=b*c^-1,c*d=d*c,c*e=e*c,c*f=f*c,f*d*f^-1=d*e=e*d,f*e*f^-1=d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<